VBIT.DLL

ver. 1.40

VBIT routines for Visual Basic

AnsiToAsclii Translate from Windows to DOS character set

AsciiToAnsi Translate from DOS to Windows character set

CRLF Manipulate CR/LF in strings, remove/insert

Decrypt Recover string encrypted by Encrypt

Decrypt7 Recover string encrypted by Encrypt7

DecryptZ Recover string encrypted by EncryptZ

Encrypt Encrypt a string, make unreadable, linked to a key

Encrypt7 As Encrypt, but, returns only 7-bit characters

EncryptZ As Encrypt, but returns only alphanumeric (A-Z,0-9)

Find Find a substring within a string from a given position
NEW FormNum Format numbers

FullPath Return full path for a file pattern.

GetDateLong Convert a "dayNumber&" to a long

GetDateStr Convert a "dayNumber&" to a string

GetDayNumber Return day number relative to 1/1 1800.

GetNumDays Returns number of days between two dates

Interest Returns calculated interest in given time period

LicenseGetCode For the developers internal use, make license code for applications

LicenseVBIT Check for legal license code for VBIT users

LicenseProgram Check for legal license code for applications

LicenseVBIT Check for legal license code for VBIT users

Modulus10 Append a CDV (Control Digit Verifier) to number, 10 method

Modulus10Calc Return the CDV for a number, 10 method

Modulus10Valid Check CDV in number and return false / true, 10 method

Modulus11 Append a CDV (Control Digit Verifier) to number, 11 method

Modulus11Calc Return the CDV for a number, 11 method

Modulus11Valid Check CDV in number and return false / true, 11 method

NumO Translate from number to string with leading zeros

Pick Pick a substring from string

PickWord Pick a word from a string

PickWords Pick more then one word from a string

Place Insert a substring into an other string

Sound Play sound

Strip Remove a given character from a string

Subst Substitute one substring with an other within a string

SubstAll Substitute all matching substrings within a string

SwapChrs Exchange two characters within a string.

SwapDate Exchange positions in a datestring.

SwapStr Exchange positions in a string according to a formatted mask

SysInfo Return system information as string.

SysInfoNum Return system information as integer

Trace Write text (string + newline) to debug output window

TraceStr Write string to debug output window

Include VBIT.BAS and VBITITAB.BAS in your projects

See also VBITITAB.WRI, VBITVTSS.WRI, VBITFILE.WRI and VBIT.HLP for description of other
VBIT functions.

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 2

1996 © InfoTech AS, Bergen, Norway

VBIT.WRI Visual Basic Invisible Tools v1.40

Function AnsiToAscii

Translate string from Windows to DOS character set.

Usage:
Result$ = AnsiToAscii (StringIn$)
We want to write some text containg special characters to a DOS file:

Example:
Open "scan-dos.txt" For Output As #1

Page 3

Write #1, "In Norway and Denmark, we use some special characters:"

Write #1, AnsiToAscii (" [E]=[AE], [@]=[OE] and [A]=[AA]")
Write #1, AnsiToAscii (" [®]=[ae], [wl=[oe] and [&]=[aa]l")
Write #1, AnsiToAscii("In Sweden, they use [A] instead of [E],")
Write #1, AnsiToAscii (" [a]l=TI[e], [0]1=[9] and [o]=[w].")

Close #1
From DOS, we can look at the file we just made:

C:\VBIT\TEST> type scan-dos.txt

In Norway and Denmark, we use some special characters:
[E]=[AE], [@]=[OE] and [A]=[AA]
[®]=[ae], [#]=[oce] and [a]=[aa]

In Sweden, they use [A] instead of [£],
[d]1=[=2], [O]=[2] and [8]=[2].

If we had not called AnsiToAscii, the result would have looked like this:
In Norway and Denmark, we use some special characters:
[E]=[AE], [@]=[CE] and [A]=[AA]
[pl=[ae], [°]=[oce] and [4a]=[aa]
In Sweden, they use [-] instead of [£],
[a]=[n], [Ol=[@] and [+]=["].

The message would have lost its meaning because of incompatible character sets.

See Also: AsciiToAnsi

Function AsciiToAnsi

Translate string from DOS to Windows character set.

Usage:
Result$ = AsciiToAnsi (StringIn$)

Read a Dos file to a Windows listbox after proper translation:

Example:
Open "DosFil.Txt" For Input As #1
Do While (Not EOF (1))
Line Input #1, dostext$
ListBox.AddItem AsciiToAnsi (dostext$)
Loop
Close #1

See also : AnsiToAscii

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 4

Function CRLF

Replace the control character pairs CR (Carrriage Return, ascii=13) and LF (Line Feed, ascii=10) with a given character
(represented by its ascii value), or the other way around (when value is negative).

This function can be used for translating text files between DOS and UNIX.

The function can be very useful when reading and writing MultiLine TextBoxes in Windows.

Usage:
Result$ = CRLF (StringIn$, asciiValue$%)

If asciiValue% is positive, then all CR/LF character pairs in StringIn$ will be replaced with the character represented
by asciiValue% and returned in Result$.

When asciiValue% is negative, all the occurences of Chr$(-asciiValue%) in StringIn$ will be replaced with CR/LF and
returned in Result$.

Simple methode for adding several lines to a MultiLine TextBox:
MTextl = CRLF("Linel@Line2@Line3"™, -Asc("@")) ' Replace "@" with CR/LF

Read MultiLine TextBox and convert linefeeds to space:
Textl = CRLF (MTextl, Asc("™ ")) ' -> "Linel Line2 Line3"

Example:
Convert file from UNIX format to DOS format (VERY FAST):
Sub UnixToDos (ByVal FromFile$, ByVal ToFile$)
BytesToRead& = FileLen (FromFile$)
If FileLength(ToFile$) > 0 Then Kill (ToFile$) 'see ITabDir sample
Open FromFile$ For Input As #1
Open ToFile$ For Binary Access Write As #2
Const maxBuff& = 30000 'Read up to 30000 bytes each time
Do While BytesToRead& > 0
BuffSize& = BytesToReadé&
If BuffSize& > maxBuff& Then BuffSizes& = maxBuffs
buffer$ = CRLF (Input$ (BuffSize&, #1), -10)'convert LF to CR/LF
Put #2, , buffer$
BytesToRead& = BytesToRead& - BuffSizes
Loop
Close #1
Close #2
End Sub

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 5

Function Decrypt

Decrypt a string encrypted by Encrypt.

Usage:
Result$ = Decrypt (EncryptedText$, EncryptionKey$)

Example:

'Crypt$ => "<'srogjadgkwdafkae5g0+wkd4r935283592+r gawasqg"
SecretkeyS$="MyCode"

DecryptedString$ = Decrypt (Crypt$, secretkey$)

'=> DecryptedString$ = "This is the secret text which shall be encrypted"

See also: DeCrypt7 , DeCryptZ , EnCrypt , EnCrypt7 , EnCryptZ

Function Decrypt?

Decrypt a string encrypted by Encrypt7.

Usage:
Result$ = Decrypt7 (EncryptedText$, EncryptionKey$)

See also: Encrypt7

Function DecryptZz

Decrypt a string encrypted by EncryptZ.

Usage:
Result$ = DecryptZ (EncryptedText$, EncryptionKey$)

See also: EncryptZ

Function Encrvypt

Encrypt a string. Will return 8-bit characters without control characters.

Usage:
Result$ = Encrypt (TextIn$, EncryptionKey$)

Example:

TextIn$S= "This is the secret text which shall be encrypted"
Secretkey$="MyCode"

Crypt$ = Encrypt (TextIn$, SecretKey$)

See also: Decrypt , DeCrypt7 , DeCryptZ , EnCrypt7 , EnCryptZ

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 6

Function Encrypt?

Encrypt a string. Will return eturn only characters from 7 bit ascii values (no control characters).

Usage:
Result$ = Encrypt7 (TextIn$, EncryptionKey$)

See also: Decrypt7, Encrypt, EncryptZ

Function EncryptZz

Encrypt a string. Will return only folded letters (A .. Z) and/or digits (0 .. 9).

Usage:
Result$ = EncryptZ(TextIn$, EncryptionKey$)

See also: DecryptZ, Encrypt, Encrypt7

Function Find

Search for a substring within an other string from the given position. The position of the found substring is returned,
else 0. (In nature equal to the function InStr in Basic). There is noe difference between Find and InStr, however it is
somewhat easier to remember Find than InStr, don't you think ?

Usage:

Result% = Find(subString$, inString$, Pos%)
Example:

Instring$ = "12345@@67890"

Pos% = Find("5@", Instring$, 1) ' Pos => 5
Pos% = Find("@", Instring$, 1) ' Pos => 6
Pos% = Find("@", Instring$, 6) ' Pos => 7

Function FormNum

Format number with/round up/down, right justify, 1000-delimiter, adding string
in front of number

Usage:
string$ = FormNum$ (number#, decimal%, length%, delimiter$)
number# : Number to format (type Double)
decimal$% : number of decimal places
length% : length on string$
(ignored if you don't want 1000-delimiter)

delimiter$: string containg 3 delimiters in row:

1) String to fill in front of number (typical blank/space).

2) String for 1000-delimiter

3) String for decimal-delimiter
Exsample:

String$ = FormNum(talll#, 2 ,16, "™ ,.")

String$ => " 12,345.00"

VBIT.WRI Visual Basic Invisible Tools v1.40 Page
String$ = FormNum(talll#, 2 ,16, " .,")
String$ => " 12.345,00"
String$ = FormNum(talll#, O ,16, "™ ,.")
String$ => " 12,345"
String$ = FormNum(talll#, O , -16, "™ ,.")
String$ => " 12345"
String$ = FormNum(talll#, 0 , -16, "*,.")
String$ => "***********12345"
String$ = FormNum(talll#, 2 , 16, "* .")
String$ => "X***xx*xx12 345 00"
String$ = FormNum(talll#, O , -16, "0,.™)
String$ => "0000000000012345"
Function FullPath
Return full path for a file pattern. The full path will include drive and all directory names for the given pattern.
Usage:
Result$ = FullPath(filePattern$)
Example:
' Assume current directory is "C:\VBIT\SAMPLE\TEST":
path$ = FullPath ("*.BAS") '-> "C:\VBIT\SAMPLE\TEST*.BAS"
path$ = FullPath("..\1lib*.DLL") '-> "C:\VBIT\SAMPLE\LIB*.DLL"
path$ = FullPath("..\VBIT*.WRI") '-> "C:\VBIT\SAMPLE\VBIT*.WRI"
path$ = FullPath("..\..*.*") '—> "C:\VBIT*.*"

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 8

Function GetDatelong
Convert a "dayNumber&" (returned from GetDayNumber) to a long on the format "yyyymmdd".

Usage:
dateAsLong& = GetDatelong (dayNumberé&)
Examples:

ldate& = GetDateLong(datel &) 'ldate&=19951224

ldate& = GetDateLong(datel &+7) ' ldate&=19951231

Function GetDateStr

Convert a "dayNumber&" (returned from GetDayNumber) to a string on the format given by dateFmt$.

Usage:
dateString$ = GetDateStr (dateNumé&, dateFmt$)

Examples:

sdate$ = GetDateStr(date1&,"DDMMYYYY") ' sdate$="24121995"
Examples:

ldate& = GetDateLong(datel &) 'ldate&=19951224

ldate& = GetDateLong(datel &+7) ' ldate&=19951231

Function GetDayNumber

Return day number relative to 1/1 1800. The number returned from this routine can be used for representing dates in a
form suitable for calculating number of days between two dates.

Usage:

dayNumber& = GetDayNumber (dateStr$, dateFmts$)
Examples:

datels& = GetDayNumber ("24/12-1995","DD MM YYYY")

date2& = GetDayNumber ("1996 01 01","YYYY MM DD")
diff& = date2& - datels ' should give 8

Function GetNumDays

Returns number of days between two dates. Valid results for dates from September 14th 1752
to December 31 9999.

Usage:
GetNumDaysé& (fromDate$, toDate$, dateFormat$, type%)

fromDate$:
String containing date "MM","DD","YYYY".
Position in string is determined by dateFormat$
(similar to the function SwapStr$).

toDate$:
String containing date "DD", "MM" and "YYYY", as
described above.

VBIT.WRI Visual Basic Invisible Tools v1.40 Page
dateFormat$:

String containing the characters "DD", "MM" and "YYYY",
where "DD" indicates the position of the day, "MM" the
month and "YYYY" the year.

type%:
IT MONTH ' Actual number of days pr month
IT MONTH_30 ' 30 days per month (31st ignored and
' february is also counted as 30 days)
Example

daysl&=GetNumDays ("01011995","01031995", "DDMMYYYY", IT MONTH)

days2&=GetNumDays ("01011995","01031995", "DDMMYYYY", IT MONTH 30)
' daysl& will be 59 and days2& will be 60

nl&=GetNumDays ("01-01-1995","03-01-1995", "MM-DD-YYYY", IT MONTH)
' nl& will be the same as dayslé&

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 10

Function Interest

Returns calculated interest in given time period based on amount and interest rate
Valid results for dates from September 14th 1752 to December 31 9999.

Usage:
Interest# (fromDate$, toDate$, dateFormat$, amount#, rate#, type$)

fromDate$:
String containing date "MM","DD","YYYY".
Position in string is determined by dateFormat$
(similar to the function SwapStr$).

toDate$:
String containing date "DD", "MM" and "YYYY", as
described above.

dateFormat$:
String containing the characters "DD", "MM" and "YYYY",
where "DD" indicates the position of the day, "MM" the
month and "YYYY" the year.

amount#:
The amount subject to interest calculation.

rate#:
The interest rate given in percent.

type%:
IT MONTH ' Use actual number of days pr month
IT MONTH_30 '30 days per month (31st ignored and
' february is also counted as 30 days)

IT_YEAR 360 '360 days per year
IT YEAR 365 '365 days per year (also for leap year)
IT_YEAR ' Use actual number of days pr year

' (if start date is in a leap year: 366)

Add types for month and year:
IT MONTH 30+IT YEAR 360 ' 30 days per month,
' 360 days per year

IT MONTH+IT YEAR 365 ' Actual number of days,
' 365 days per year
IT MONTH+IT YEAR ' Actual number of days,

' 365/366 days per year
(if start date is in a
' leap year, use 366)

VBIT.WRI

Example:

loan# =

irate# =
fmt$ =
typs =
il#=Interest ("01
i2#=Interest ("01
i3#=Interest ("01

100000.0
10.0 '

interest rate
"DD MM YYYY"
IT MONTH + ITiYEAR7365

Visual Basic Invisible

01 1995","01
01 1995","01
07 1995","01

01
07
01

Tools v1.40 Page 11

o\

1996", fmt$, loan#, irate#, typ%)
1995", fmt$, loan#, irate#, typ%)
1996", fmt$, loan#, irate#, typ%)

)

id#=Interest ("01 01 1996","01 07 1996", fmt$, loan#, irate#, typ%s
' il# = 10000.0 ' one year (365 days)

' i24 = 4958.9 ' 1st half (181 days)

' 13# = 5041.1 ' 2nd half (184 days)

' 144 = 4986.3 ' 1st half next year (182 days: leap year)
typ% = IT_MONTH 30 + IT YEAR 360

il#=Interest ("01
i2#=Interest ("01
i3#=Interest ("01
id4#=Interest ("01

01 1995","01 01
01 1995","01 07
07 1995","01 01
01 1996","01 07

1996", fmt$, loan#, irate#, typ%)
1995", fmt$, loan#, irate#, typ%)
1996", fmt$, loan#, irate#, typ%)
1996", fmt$, loan#, irate#, typ%)

' i1# = 10000.0 ' one year (360 days)
' i24 = 5000.0 ' 1st half (180 days)
' 13# = 5000.0 ' 2nd half (180 days)
' 144 = 5000.0 ' 1st half next year (180 days)

Function LicenseGetCode

This function is meant to be used in a stand-alone program and the purpose is to generate licence code for applications.
See function LicenceProgram.

Usage:

Result$ = LicenseGetCode (Name$, Key$S)

Example:

Code$ = LicenseGetCode ("Bjorn Nornes", "Key key key 1")

See also: LicenseVBIT , LicenseProgram

Function LicenseProgram

This function must be placed in the start-form of your application. If the code and the key is matching,. the function
returns True(-1) else False(0). See also function LicenseGetCode.

Usage:

Result% = LicenseProgram(CustomerName$, Code$, Key$)

Example:

Status% = LicenseProgram("InfoTrade AS", "ABXY12", "Key Key Key 1")

See also: LicenseGetCode , LicenseVBIT

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 12

Function LicenseVBIT

The buyer of this product will receive a code from InfoTech AS. This will make him/her a
registered user of the product and he/she can use the product freely in his/her system.

The table functions are protected by a code for those who have not bought the product. In Visual Basic runmode the
protection is in a mild form. When an exefile is made the protection becomes more aggressive and will more often
remind the user of the lack of payment. Despite this, the user can fully test the product or use the 'free to use functions
in the package.

Usage:
Result% = LicenseVBIT (Name$S , CodeS$)

Result% will contain a True(-1) if a legal code is given, else False(0).

Example:
Status% = LicenseVBIT ("Douglas Moore", "TT4LBT")

See also: LicenseGetCode , LicenseProgram

Function Modulusl0

Append a Control Digit Verifier to the input string based on the modulus 10 formula . All characters except digits in the
StrIn$ are ignored during calculation.

Usage:

Result$ = ModuluslO (StrIn$)

Example:

CustNum$ = Modulusl0("95101201230") ' CustNum$ = "951012012302"

See also: Modulus11 , Modulus10Calc , Modulus11Calc , Modulus10Valid , Modulus11Valid_

Function Modulusll

Append a Control Digit Verifier to the input string based on the modulus 11 formula. All characters except digits in the
StrIn$ are ignored during calculation.

Usage:

Result$ = Modulusll (StrIn$)

Example:

Account$ = Modulusll ("9521.05.6932") ' Account$ = "9521.05.69325"

See also: Modulus10 ,Modulus10Calc ,Modulus11Calc ,Modulus10Valid ,Modulus11Valid

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 13

Function ModuluslOCalc

The function returns a control digit based on CDV modulus 10 calculation over the StrIn$.

Usage:

Result$ = ModuluslOCalc (StrIn$)

Example:

CDS$ = Modulusl10Calc("95101201230") ' CD$ = "2"

See also: Modulus10 , Modulus11 , Modulus11Calc , Modulus10Valid , Modulus11Valid

Function ModulusllCalc

The function returns a control digit based on CDV modulus 11 calculation over the StrIn§.

Usage:

Result$ = ModulusllCalc (StrIn$)

Example:

CDS$ = ModulusllCalc("9521.05.6932") ' CDS$ = "5"

See also:Modulus10 , Modulus11 , Modulus10Calc , Modulus10Valid , Modulus11Valid

Function ModuluslQOValid

The function returns True(-1) if the last character of StrIn$ is a valid CDV based on the modulus 10 formula, else it
returns False(0).

Usage:
Result% = ModuluslOValid(StrIn$)

Example:
If ModuluslOValid("9521.05.69325") Then Status="OK"

See also: Modulus10 , Modulus11 , Modulus10Calc , Modulus11Calc , Modulus11 Valid

Function ModulusllValid

The function returns True(-1) if the last character of StrIn$ is a valid CDV based on the modulus 11 formula, else it
returns False(0).

Usage:
Result% = ModulusllValid(StrIn$)

Example:
If Not ModulusllvValid("9521.05.69328") Then Status="ERROR"

See also: Modulus10 , Modulus11 , Modulus10Calc , Modulus11Calc , Modulus10Valid_

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 14

Function Num0

Convert a positive number to a string with leading zeros.
The number of digits must be given in the call, max 9.

Usage:

Result$ = NumO (Numberé&, Digits$%)

Example:

String$ = NumO (1, 3) => "001"

String$ = NumO (1234,9) => "000001234", max number of digits.
String$ = NumO(1234,10) => "1234"

Function Pick

Pick one or more characters from a text string. The position of the first character, and the wanted number of characters
from that position must be given in the call. The function returns a string.

Usage:
Result$ = Pick(StringIn$, FromPos$%, Length%)

Requiring more characters than the input sting contains, causes the function to fill the surplus characters with blanks.
If the wanted number of characters is set to 0, the function will return rest of the string from the given position.

If the position is given as a negative number, the start position will be relative to the end of the string. -1 is the last
position in the string, -2 is the last but one, and so on. 0 as position will be interpreted as the position after the last

character.

If the number wanted is given as a negative number, the routine will pick characters from the left of the given position,
inclusive.

Example:
String$ ="Example of the Pick function in use"
Result$ = Pick(String$,1,7) 'Result$ => "Example"

Result$ = Pick(String$,32,11) 'Result$ => " use "

Result$ = Pick(String$,32,0) 'Result$ => " use"

Result$ = Pick(String$,-10,8) 'Result$ => "ion in u"

Result$ = Pick(String$,8,-6) 'Result$ => "ample "

Result$ = Pick(String$,-5,-2) 'Result$ => "in"

Result$ = Pick(String$,0,-3) 'Result$ => "se " (0 is the pos. after last
char)

See also: PickWord , PickWords

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 15

Function PickWord

Pick a word from a string. Declaring the position number of the wanted word and the delimiter, the function returns the
wanted word as a string.

Usage:
Result$ = PickWord(StringIn$, WordNumber%, Delimiter$%)

The delimiter must be given as an ascii value. For the purpose of increasing the readability the VB function "Asc()" can
be used. Given semicolon as delimiter: Asc (";"). Having a do-while-loop where PickWord will be called many times, it
would enhance speed to initialize a variable outside the loop: Semicolon% = Asc (";")

Ignoring leading delimiters and /or deal with them as one connected delimiter, the negative ascii value for the delimiter
should be given: Semicolon% = -Asc(";")

Example:

text$ = "Here;is;an;;example;using PickWord" 'Result

Result$ = PickWord(text$, 3, Asc(";™)) ""an"

Result$ = PickWord(text$, 5, Asc(";™)) ""example"
Result$ = PickWord (text$, 6, 59) '"using PickWord"
Result$ = PickWord (text$, 5, -59) '"using PickWord"
Result$ = PickWord(text$, 2, 32) '""PickWord"
Result$ = PickWord(text$, 2, Asc("e™)) vipn

See also: Pick , PickWords_

Function PickWords

Pick more than one word from a string. If you only need one word, you ought to use PickWord.

Usage:
Result$ = PickWords (StringIn$, WordNumber$%, NumWanted$%, Delimiter%)

Given the word number for the first word in the string and the number of wanted words, the function returns a string.

In order to get all words from a given wordnumber, 0 as number must be used.

The delimiter must be given as an ascii value. For the purpose of increasing the readability the VB function "Asc()" can
be used. Given semicolon as delimiter: Asc (";"). Having a do-while-loop where PickWord will be called many times, it

would enhance speed to initialize a variable outside the loop: Semicolon% = Asc (";")

Ignoring leading delimiters and /or deal with them as one connected delimiter, the negative ascii value for the delimiter
should be given: Semicolon% = -Asc(";")

Example:

text$ = ";Here;is;an;;example;using PickWords" 'Result

Result$ = PickWords (text$, 3, 2, Asc(";")) '"is;an"
Result$ = PickWords (text$, 3, 3, Asc(";™)) '"is;an"
Result$ = PickWords (text$, 4, 3, Asc(";")) '""an; ;example"
Result$ = PickWords (text$, 3, 2,-Asc(";™)) '"an;example"
Result$ = PickWords (text$, 2, 0, Asc(" ™)) '""PickWords"

' note the leading ";" in text$

See also: Pick , PickWord_

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 16

Function Place

Superimpose a string on a copy of "tostring" in the given position and return the result as a string.

If one want the whole "fromstring" one can use 0 as the number of wanted characters, else use the actual number of
wanted characters picked from "fromstring". If the given number is greater then the length of the "fromstring", the
function will fill the surplus number by space.

Usage:

Result$ = Place(FromString$, ToString$, Pos%, Length%)

Example:

tostring$ = "EEEEAAKAAAN 'Result

Result$ = Place ("TEST", tostring$, 4, 0) Tk X KTESTH** "
Result$ = Place ("™ TEST", tostring$, 3, 6) 'Wakx TEST **"
Result$ = Place ("TEST", tostrings, 1, 2) IR Kk kK K kAT
Result$ = Place (NumO (123,6), tostring$, 7, 0) TWhxkxxx000123"

Function Sound

Play sound through PC-speaker or through sound-card !

Sound "+" ' OK signal (same as Beep)

Sound "?" ' System sound for Question

Sound "!" ' System sound for Exclamation (error)

Sound "*" ' System sound for Asterisk ("finished")

Sound "." ' System sound for Critical Stop

Sound "-" ' PC speaker beep

Sound "FILENAME.WAV" ' Play WAV-file. If the file is not found in

' the current/given directory, the routine will
"look for the file in the WINDOWS directory.

Function Strip

Remove a given character from a string.

Usage:

Result$ = Strip(StringIn$, Char$, Type$)

Type:

STRIP_L Remove leading delimiters, (as LTRIM i Basic)
STRIP_T Remove trailing delmiters, (as RTRIM i Basic)
STRIP_LT Remove leading and trailing delmiters,(as TRIM i Basic)

STRIP_ALL Remove all delmiters

What sets Strip and VB's *TRIM funksjon apart, is that Strip may remove any character where
*TRIM only removes "space".

Example:

Strlng$ = "***T*E*S*T***"

Result$ = Strip(String$, "*", STRIP L) VTWTHAEXSKTHxx N
Result$ = Strip(Strings, "*", STRIP T) VMR ATHRERSHT!
Result$ = Strip(String$, "*", STRIP_LT) TMTREX ST
Result$ = Strip(String$, "*", STRIP ALL) '"TEST"

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 17

If you want to remove repeating embedded delimiters, the function PickWords can be suitable.

String$ = ";;This;;is;an;;;example;using;;PickWords;;"
Result$ = PickWord(String$, 1, 0, -Asc(";"))
'Result$:"This;is;an;example;using;PickWords"

Function Subst

Exchange a substring with another string from a given position in the third string and return the resultstring.

The position must be given as a variable. The variable will be changed by the function. Into this variable the next
position is given if there are more than one occurence of the substring in the instring after the position, else a zero will
be returned. The returned position will be related to the resultstring. Search for inString$ is case sensitive.

Usage:
Result$ = Subst(O1dStr$, NewStr$, inString$, Pos%)

This call will change the variable Pos%.

pos%=1 'startpos for searching in the
'instring$

Inn$= "5 hours a kr 100: kr 500"

Res$= Subst ("kr", "NOK", Inn$, pos$%$)'Res$:"5 hours a NOK 100: kr 500
'pos%s :20 to next occurrence

Res$= Subst ("kr", "NOK", Inn$, pos%)'Res$:"5 hours a NOK 100: NOK 500
' pos% :0

See also: SubstAll

Function SubstAll

Exchange all the occurences of oldstring$ with newstring$ in a copy of the instring$ which is returned as a result.
Search for inString$ is case sensitive.

Usage:

Result$ = SubstAll (01dStr$, NewStr$, inStrings$)

Example

res$ = SubstAll ("1 ", "@@", "1111 222221 33333 444441 555555")
res$ = "111@Q22222Q@33333 44444Q@555555"

res$ = SubstAll ("is", "was", "This is an example")

res$ = "Thwas was an example"

See also: Subst

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 18

Function SwapChrs

Swap two characters within a string. The argument "Character" contains the two characters which are to be swapped.
The function returns a string where all the occurences of the specified characters are swapped. A typical example would
be to swap the characters period(.) and comma,).

Usage:

Result$ = SwapChrs (String$, Characterss$)

Example:

Result$ = SwapChrs("1.234.567,00", ".,") '=> "1,234,567.00"

See also: SwapDate , SwapStr

Function SwapDate

Swap the position of the year and day within a datestring with format "YYMMDD" or "DDMMYY"

The function SwapStr may be used as replacement for SwapDate. Please refer to SwapStr

Usage:

Result$ = SwapDate (Date$)

Example:

NewDate$ = SwapDate ("241294") 'o=> "941224"
NewDate$ = SwapDate ("941224") 'o=> "241294"

See also: Swap , SwapStr

Function SwapStr

This function can replace SwapDate, but can also be used in other occasions. The "fromFmt$" and the "toFmt$" consist
of letters which describe the wanted formate. E.g. "DD-MM-YY", YYMMDD", (Year, Month, Day).

Usage:
Result$ = SwapStr(StrIn$, FromFmt$, ToFmt$)

Letters which are found in both FromFmt$ and the ToFmt$ give the position and length, repeating equal letters, of the
string which to be be picked from "StrIn$" and placed in the Result$. The

ToFmt$ is the template for the Result$. All positions which are not overwritten will be left in the Result$ untouched. If
the length of the substring FromFmt$ is less then the lenght of the ToFmt$, leading zeros will be put into the Result$. If
the length of the substring ToFmt$ is less then the length of FromFmt$ then the function picks the number of characters
from the left which can be placed according the template. E.g. 1994 (yy) => 94.

Example:
ResultString$ = SwapStr("241294", "ddmmyy", "yymmdd") '"941224"
ResultString$ = SwapStr("941224", "yymmdd", "dd/mm-yy") '"24/12-94"

ResultString$ = SwapStr("12-24-1994", "mm dd yyyy", "ddmmyy")'"241294"

See also: Swap SwapDate

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 19

Function SysInfo

This returns system information about the PCs environment as string.

Usage:

Result$ = SysInfo (What%)

What$ Result$

SCREEN_SIZE X The width of the screeen

SCREEN_SIZE Y The height of the screeen

SCREEN SIZE PALETTE The number of colors available

MEMORY FREE KB Free memory measured in KiloBytes

MEMORY BIGGEST FREE BLOCK KB Biggest free memory block measured in
KiloBytes

DISK DRIVE Current drive, (1="A", 2="B", 3="C")

DISK FREE KB Free disk space measured in KiloBytes

DISK SIZE KB Total disk space measured in KiloBytes

DISK TYPE Drive type (see below)

The following is only defined for SysInfo (string only):

DIR_WINDOWS Current path for the \WINDOWS\directory

DIR WINDOWS SYSTEM Current path for the \WINDOWS\SYSTEM\ directory
DISK PATH Current D:\DIRECTORY\NAME

DISK VOLUME LABEL Disk label, (name, 11 char.)

DISK VOLUME DATE Volume label date "YYYYMMDD"

DISK VOLUME TIME Volume label time "TT:MM:SS"

DISK TYPE returns
"REMOVABLE"
"FIXED"
"REMOTE"
n ? n
For all "DISK" parameters, the current disk drive will be used unless a disk drive is specified.
Specifying an other drive goes as follows:
Add the drive number or the ascii value of the drive letter to the argument (What%).

Examples

si$ = SysInfo (DISK SIZE KB + 1) '=> Regarding drive A
si$ = SysInfo (DISK PATH KB + 2) '=> Regarding drive B
si$ = SysInfo(DISK SIZE KB + Asc("A")) '=> Regarding drive A
si$ = SysInfo(DISK FREE KB + Asc("C") '=> Regarding drive C

See also: SysInfoNum

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 20

Function SysInfoNum

This returns system information about the PCs environment. SysInfoNum as long integer when possible.

Usage:

Result& = SysInfoNum(What%)

What% Result&

SCREEN_SIZE X The width of the screeen

SCREEN SIZE Y The height of the screeen
SCREEN_SIZE PALETTE The number of colors available
MEMORY_FREE KB Free memory measured in KiloBytes
MEMORY BIGGEST FREE BLOCK KB Biggest free memory block measured in KiloBytes
DISK DRIVE Current drive, (1="A", 2="B", 3="C")
DISK FREE KB Free disk space measured in KiloBytes
DISK SIZE KB Total disk space measured in KiloBytes
DISK TYPE Drive type (see below)

DISK TYPE returns
DRIVE REMOVABLE
DRIVE FIXED
DRIVE REMOTE
0

For all "DISK" parameters, the current disk drive will be used unless a disk drive is specified.
Specifying an other drive goes as follows:

Add the drive number or the ascii value of the drive letter to the argument (What%).

Example:
si& = SysInfoNum(DISK SIZE KB + Asc("D") '=> Regarding drive D

See also: SysInfo

Sub Trace

Output a line of text followed by a linefeed to the debug output device. The debug output device can be a secondary
monochrome screen, a screen connected to a Com-port or a window on the screen. You have to run a special program
for activating the debug device. A suitable program for this purpose is DBWIN.EXE.

Usage:
Trace debugText$

This routine together with TraceStr is a good alternative to the standard debug in Visual Basic.
It can be used for dumping contents of variables, tracing events etc.

Example:
Trace "Click event: Mouse button=" & Button & ", X=" & X & ", Y=" & Y
' output: Click event: Mouse button=1, X=12, Y=43

See also : TraceStr

VBIT.WRI Visual Basic Invisible Tools v1.40 Page 21

Sub TraceStr

Output a text string to the debug output device.

Usage:
TraceStr debugText$

Example:

TraceStr "Click event: Mouse button="

TraceStr Button

TraceStr ", X=" & X

Trace ", Y=" & Y ' terminate line.

' output: Click event: Mouse button=2, X=122, Y=143

See also : Trace

